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Exotic Hadrons

Plethora of quarkonium-like states observed since
2003 which do not fit into conventional ggbar
models.

X(3872) - large isospin violation
Y(4260) - anomalous coupling to open charm channels
Z(3900) - charged, charmonium-like state

Ambiguous interpretation of signals:

Multi-quark resonances, hadronic molecules,
hadrocharmonia, kinematic effect, hybrid

For reviews of XYZs see e.g.:

A. Hosaka et al. [arXiv:1603.09229]
N. Brambilla et al. [arXiv:1907.07583]
F-K. Guo et al. [arXiv:1912.07030]
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BESIII [Phys. Rev. Lett. 110, 252001 (2013)]

Case of the Zc(3900)+
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Charmonium-like state seen in 1 J/p and D*D*bar
and various production modes.
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Charged nature unambiguously points to exotic
nature but precise structure still unknown.
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Triangle rescattering with final state pions unlikely to explain
away Z-like signal but must still be accounted for in amplitude
analysis and parameter extraction.

Y (4260)

Guo, Liu, Sakai [arXiv:1912.07030]
Szczepaniak [arXiv:1501.01691]



[arXiv:hep-ex/0003020]
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Exclusive photoproduction

JPAC [arXiv:2008.01001]

See also e.g.

Galata [arXiv:1102.2070]

Lin, Liu, & Xu [ arXiv:1308.6345]
Wang et al. [arXiv:2009.05789]

Recipe for an amplitude:
1. Identify relevant exchanges
2. Photon couplings fixed by observed decay widths and VMD

3. Bottom couplings from other reactions

Necessary distinction between production near-threshold and high-energy

e In near threshold production lowest spin exchanges dominate
e At high-energies Regge physics kicks in

Production cross-sections by meson exchanges fall at high energies as a
consequence of unitarity (Reggeization).

Lower yp invariant mass = higher cross-section for X and Z




X(3872)

Effect very dramatic for vector exchanges, X(3872) production
(note: interpolation between high and low energy not really straightforward)
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Zc(3900)+

Spin-0, pion exchange = cross-sections for Z states fall less dramatically from threshold production.

Spectroscopy of Z’s possible with high-luminosity at low CM energies!
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Vector charmonia and Y(4260)

Unlike X and Z, vector states produced via diffractive Pomeron exchange.

Diffractive cross-section rise with energy, Y states instead benefit from high CM.
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jpacPhoto

Code implementations of all amplitudes mentioned here (and more) freely
available for download and use at github.com/dwinneyljpacPhoto

e Probability distribution (Z_A| A |*2)

Available amplitudes, so far, include:
e Differential cross section (do / dt)
e Baryon resonance (s-channel)

® Integrated total cross section (o) « ‘Pomeren exchange (E:chanael)

* Polarization asymmetries (A_LL and K_LL) e (fixed-spin and reggeized) Charged pseudo-scalar meson exchange (t-channel)

e Spin density matrix elements ( p~r o AA") o (fixed-spin and reggeized) Vector meson exchange (t-channel)

= Integrated beam asymmetry ( 3_4pi) o Primakoff effect off nuclear target (t-channel)

Beam Asyrimeteyinihe vadieeion (29) e (fixed-spin) Dirac fermion exchange (u-channel)
L] 1 -al I
y Y y = e (fixed-spin) Rarita-Schwinger fermion exchange (u-channel)

e Parity asymmetry (P_o)

Can incorporate production and subsequent decays in MC generators, see Derek’s talk up next!



Summary

The EIC offers a unique opportunity to study exotics in photoproduction to
complement measurements at existing facilities.

In particular production of Zc and Zb states hugely benefits from a high-luminosity,
low energy program (e.g. at IR2). Production cross-sections comparable to
existing e+e- machines.
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Thank youl!
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At low energies (near threshold) we expect the partial wave sum of the
full amplitude to be o (p(s)qg(s)) such that only the lowest j
contributes. Thus, we consider fixed-spin, Feynman propagators which
contain full energy dependence at low energies.

Easily written in terms of Feynman rules:
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Equivalently contracting all Lorentz structures evaluated in the t-channel
CM frame we may match this to a helicity amplitude proportional to

dfl,,u(‘)t) B polynomial of order j in s
t — m‘% a 7= m%

15

13



At high energies, the above will like s/ which for j > 1 exceeds unitarity
bounds. Therefore we restrict fixed-spin exchanges heuristically to a few
GeV above threshold.

Beyond that, we must consider the re-summed (Reggeized) tower of
arbitrary spin with the replacement

7 4p(t t i—M djl i (Ot) 1 1=k —ima(t) a(t)—M
N (EEED)T - a1 - a(e)[—5—] (2)
Ly =

t e
So gf”)L,(s, t) t— mg

We use usual real, linear parameterizations for the p — w and 7 Regge
trajectories:

s

a,(t) =1+0.9(t— mlz)) a.(t) =0.7(t—m2) .

Note an intercept g = a(t = 0) < 1 forces the Reggeized amplitude to
decrease at high energies.
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